STORMASTER ESE Air Terminal # LIGHTNING PROTECTION INTERNATIONAL PTY LTD # Market-Leading Advantages LPI's fully-accredited and approved family of Stormaster early streamer emission (ESE) air terminals have the following key characteristics: - First company to introduce an optimised lightning coupling design using four independent panels; - Extensive field experience with more than 50,000 installations over 15+ years in more than 75 countries around the world: - Air terminal family designed to meet all aspects of NF C 17-102 (2011), including the detailed time advance - testing criteria and correct test sequencing per the standard; - Additional testing and certification to IEC 62561-2: - All testing performed in ENAC and ILAC-accredited high-voltage laboratories; - Proven technology based on international research findings, modelling and field testing. # The LPI story Lightning Protection International Pty Ltd (LPI) is a fully Australian owned manufacturer and supplier of direct strike lightning protection, transient voltage surge suppression, and earthing / grounding solutions. LPI has provided specialist lightning protection advice to customers for many years in some of the most lightning-prone areas of the world. LPI personnel have extensive experience in risk management, system design, training, installation, certification, and commissioning of lightning protection systems in a wide variety of industry groups. LPI maintains a third party Quality Management System to AS/NZS ISO 9001:2015. LPI's range of products and services are exported from its head office and research facility (in Tasmania, Australia) and via regional offices worldwide. The company has been recognised within Australia for its outstanding export successes and has been awarded several prestigious export awards. # LPI's 4-Step Approach Active in Industry to Lightning Protection It is the strategic aim of our company to be able to provide a complete packaged solution. LPI has identified 4 key steps when considering the complete approach to lightning protection. Ask for our 4-Step approach to lightning protection. #### Our comprehensive approach to lightning protection includes: - Definition and provision of area protection - Creation of a bonded earthing system - 3 Protection of mains power lines - Protection of signal, data and communication lines #### LPI's Stormaster ESE The LPI Stormaster (Early Streamer Emission) range of terminals provides a safe and efficient system for the protection of your facility from direct lightning strikes. The LPI Stormaster ESE terminal captures the lightning energy at a **preferred point**. ### How does the LPI Stormaster ESE Terminal work? The Stormaster ESE air terminal uses the naturally occurring electrical field to complete the timely release of an upward streamer. This process provides for a safe and efficient method of controlling dangerous lightning energy at a preferred point. As a thunderstorm gathers overhead, the ambient electrical field surrounding the Stormaster ESE begins to rise in voltage. Upon the approach of a downward leader towards the protected area, there is a rapid increase in the electric field which initiates the triggering of an upward streamer from the Stormaster ESE terminal. The early initiaton allows for a larger or enhanced area of protection to be provided by the Stormaster ESE in comparison to a conventional rod, in accordance with NF C 17-102 [2011]. With the release of the upward streamer from the finial tip earlier than other competing structural points, the Stormaster ESE terminal becomes a preferred point for the capture of the lightning discharge within the protected area. # The Stormaster ESE range LPI Early Streamer Emission (ESE) air terminals in **Stainless Steel**. Ordering Code: STORMASTER ESE-XX-YY-ZZ XX: Available in 15, 30, 50 and 60 YY: SS for stainless steel model **ZZ:** Blank for standard model (to FRP Mast), **GI** for 2 inch BSP GI pipe adaptor #### **AIR TERMINAL TESTER:** Ordering Code: AIR TERMINAL TESTER # **Certified Performance** As one of the leading companies in the field of lightning protection, LPI has invested heavily in field and laboratory testing as part of its on-going commitment to research and development. Throughout the product development of the Stormaster ESE, the proto-type models were subjected to intense testing under high voltage conditions. Following further refinements, the Stormaster terminals were subjected to final testing by an independently accredited test laboratory which completed testing in full compliance with the **French National Standard** #### **Downconductors** NF C 17-102 (2011) requires the installation of two downconductors for each installed ESE air terminal, with one downconductor permitted to use electrically continuous natural components of the structure. # Lightning Strike Recorder (LSR2) LPI have developed a LSR which is designed for easy mounting on a downconductor to effectively count the number of lightning strikes captured by the Stormaster ESE Terminal. LSR Tester available on request, contact LPI for details. # Lightning Protection Earths The installation of a radial earthing arrangement with end caps is recommended for each lightning protection earth. The radial earthing configuration provides an effective means for the safe dissipation of the lightning energy into the ground mass. All individual lightning earths should be bonded together in a ring earth arrangement to minimise ground loops and potential differences under transient conditions. Compliance to NF C 17-102 [2011] requires an earth resistance reading of less than 10 0hms for the lightning earths. ### LPI STORMASTER ESE AIR TERMINAL Rp2 #### **Protection Performance** The protection radius (Rp) of a Stormaster ESE terminal is calculated using the following formula as defined in NF C 17-102 (September 2011), namely: $Rp[h] = \sqrt{2rh - h^2 + \Delta[2r + \Delta]}$ for $h \ge 5$ m and $Rp = h \times Rp_5 / 5$ for $2 \le h < 5$ m = Stormaster height relative where **h** to the area being protected [m] \mathbf{Rp}_{s} = value of Rp from Eqn. (1) when h = 5 m = 20 m for protection level I (Very High protection) 30 m for protection level II (High protection) 45 m for protection level III (Medium protection) 60 m for protection level IV (Standard protection) = Stormaster time and height advantage according to the and Stormaster model installed: Stormaster ESE 15: $\Delta = 15 \, \mu s$ Choices: Stormaster ESE 30: Δ = 30 μ s | PROTECTION RADIUS, Rp (m) | | | | | | | | | | | | |--|----------------------|----------------------|----------------------|----------------------|----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------| | h = height of Stormaster
ESE terminal above the
area to be protected (m) | 2 | 4 | 5 | 6 | 10 | 15 | 20 | 45 | 60 | 80 | 100 | | Protection Level I (Very High) Stormaster ESE 15 Stormaster ESE 30 Stormaster ESE 50 Stormaster ESE 60 | 13 | 25 | 32 | 32 | 34 | 35 | 35 | 35 | 35 | 35 | 35 | | | 19 | 38 | 48 | 48 | 49 | 50 | 50 | 50 | 50 | 50 | 50 | | | 27 | 55 | 68 | 69 | 69 | 70 | 70 | 70 | 70 | 70 | 70 | | | 31 | 63 | 79 | 79 | 79 | 80 | 80 | 80 | 80 | 80 | 80 | | Protection Level II (High) Stormaster ESE 15 Stormaster ESE 30 Stormaster ESE 50 Stormaster ESE 60 | 15 | 30 | 37 | 38 | 40 | 42 | 44 | 44 | 44 | 44 | 44 | | | 22 | 44 | 55 | 55 | 57 | 58 | 59 | 59 | 59 | 59 | 59 | | | 30 | 61 | 76 | 76 | 77 | 79 | 79 | 79 | 79 | 79 | 79 | | | 35 | 69 | 86 | 87 | 88 | 89 | 89 | 89 | 89 | 89 | 89 | | Protection Level III
(Medium)
Stormaster ESE 15
Stormaster ESE 30
Stormaster ESE 50
Stormaster ESE 60 | 18
25
35
39 | 36
51
69
78 | 45
63
86
97 | 46
64
87
97 | 49
66
88
99 | 52
69
90
101 | 55
71
92
102 | 60
75
95
105 | 60
75
95
105 | 60
75
95
105 | 60
75
95
105 | | Protection Level IV (Standard) Stormaster ESE 15 Stormaster ESE 30 Stormaster ESE 50 Stormaster ESE 60 | 20 | 41 | 51 | 52 | 56 | 60 | 63 | 73 | 75 | 75 | 75 | | | 29 | 57 | 71 | 72 | 75 | 78 | 81 | 89 | 90 | 90 | 90 | | | 38 | 76 | 95 | 96 | 98 | 100 | 102 | 109 | 110 | 110 | 110 | | | 43 | 85 | 107 | 107 | 109 | 111 | 113 | 119 | 120 | 120 | 120 | Contact LPI for Protection Radius for Level I+ and Level I++ #### Stormaster Installation #### Disclaimer - LPI maintains a policy of on-going product development, specifications are subject to change without notice - Application detail, illustrations and schematic drawings are representative only and should be used as guides. - It should be noted that 100% protection for direct strike lightning, lightning detection and surge and transient protection equipment is not possible and cannot be provided due to the lightning discharge process being a natural atmospheric event. # Advantages of the Stormaster ESE Terminal A typical Stormaster ESE installation consists of a single Stormaster ESE terminal with an enhanced area of protection and downconductors connected to a dedicated earthing system designed to have a low impedance to lightning. - LPI's Stormaster ESE system is simple to install and requires no special maintenance. - LPI's Stormaster ESE system is a costeffective lightning protection solution whilst providing superior safety. - The Stormaster ESE range of terminals have been fully tested in accordance with NF C 17-102 (2011) in a high voltage laboratory, under high current impulses and environmental chambers. Ultimate direct strike lightning protection as installed across 70 countries around the world. ### NF C 17-102 (2011) The New Standard NF C 17-102 is written specifically to ensure compliance with regard to the testing, application and installation of ESE terminals. The new standard, issued in 2011, is deemed to be applicable to structures of any height and for the protection of open areas. The previous version of the standard, first published in 1995, has been cancelled by the French standards organisation UTE and conformity with that version ceased in September 2012. NF C 17-102 [2011] includes much more stringent requirements when compared to the 1995 version. The main differences are as follows: - 1. There are now four protection levels rather than the previous three levels. - 2. There are two new enhanced sublevels for protection level I (levels I+ and I++). - Protection of structures taller than 60 metres is now allowed and there are special rules with regard to strike interception and downconductors. The top 20% of tall buildings needs to be protected. - Some simple rules regarding downconductors, commonly two, are needed, but one of them can be the natural components of the structure. 5. The earlier ban on coaxial insulated downconductors has been removed, but any use of insulated conductors has to follow the separation distance requirements per the IEC 62305 standards. NF C 17-102 (2011) STANDARD # Research and Development LPI has an ongoing commitment to Research and Development. LPI personnel and its associates have been involved in a number of field trials in the most lightning prone regions of the world. This experience has extended throughout such countries as Australia, Indonesia, Sri Lanka the USA and South Korea. Testing of the Stormaster Terminal: ITE HV Laboratory, Europe # LIGHTNING PROTECTION INTERNATIONAL PTY LTD ABN 11 099 190 897 PO Box 379 Kingston, Tasmania, Australia 7051 49 Patriarch Drive, Huntingfield, Tasmania, Australia 7055 Telephone: Australia: 03 6281 2477 International: +61 3 6281 2480 Email: info@lpi.com.auWeb: www.lpi.com.au